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Abstract

A systematic review was performed to categorize the hERG (human ether-a-go-go–related gene) liability of antihistamines, antipsychotics, and anti-
infectives and to compare it with current clinical risk of torsade de pointes (TdP). Eligible studies were hERG assays reporting half-minimal inhibitory
concentrations (IC50). A “hERG safety margin” was calculated from the IC50 divided by the peak human plasma concentration (free Cmax). A margin
below 30 defined hERG liability. Each drug was assigned an “uncertainty score” based on volume, consistency, precision, and internal and external
validity of evidence. The hERG liability was compared to existing knowledge on TdP risk (www.credibledrugs.org). Of 1828 studies, 82 were eligible,
allowing calculation of safety margins for 61 drugs. Thirty-one drugs (51%) had evidence of hERG liability including 6 with no previous mention of
TdP risk (eg, desloratadine, lopinavir). Conversely, 16 drugs (26%) had no evidence of hERG liability including 6 with known, or at least conditional or
possible,TdP risk (eg, chlorpromazine, sulpiride).The main sources of uncertainty were the validity of the experimental conditions used (antihistamines
and antipsychotics) and nonuse of reference compounds (anti-infectives). In summary, hERG liability was categorized for 3 widely used drug classes,
incorporating a qualitative assessment of the strength of available evidence. Some concordance with TdP risk was observed, although several drugs
had hERG liability without evidence of clinical risk and vice versa. This may be due to gaps in clinical evidence, limitations of hERG/Cmax data, or other
patient/drug-specific factors that contribute to real-life TdP risk.
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Of particular concern for the pharmaceutical industry,
health regulatory agencies, and healthcare professionals
is the potential for drugs to induce torsade de pointes
(TdP). This is a ventricular tachycardia associated
with delayed cardiac repolarization that can manifest
as a prolonged QT interval on the electrocardiogram
(ECG) and that may cause syncope, seizure, ventricular
fibrillation, and sudden death.1 In 2010 the ARITMO
project (http://www.aritmo-project.org/), involving a
pan-European multidisciplinary collaboration of re-
searchers, was commissioned to investigate the arrhyth-
mogenic potential of 3 drug classes: antihistamines,
antipsychotics, and anti-infective drugs. The ultimate
aim of the project was to integrate the evidence from
a variety of sources in order to describe the potential
for these agents to induce TdP. These sources included
data from molecular in-silico modeling studies, animal
studies, spontaneous reporting databases, and epidemi-
ological studies in large healthcare databases.

Published clinical data on drug-induced TdP are
relatively sparse and are usually limited to individual
case reports. Formal early-phase clinical studies, known
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as thorough QT studies, focus on QT prolongation
rather than TdP risk and have only been performed
for drugs marketed after 2005. On the other hand, pre-
clinical data on arrhythmogencity are widely published.
Because there does not appear to be a single “gold
standard” preclinical test that reliably predicts clinical
events in routine drug use, regulatory agencies currently
recommend that a number of different models be used
in preclinical safety testing.2 One of the core testing
systems is the in vitro assay of the rapid component
of the delayed rectifier potassium channel current (IKr),
also known as the hERG assay because this channel
is encoded by the human ether-a-go-go–related gene
(hERG). In addition, in vitro action potential assays
and in vivo QTc studies in laboratory animals (espe-
cially dog, monkey, swine, rabbit, ferret, and guinea pig)
are used.2 The merits and limitations of the different
preclinical models are discussed elsewhere.3–6

Although assays for in vitro action potential and
in vivo QTc studies provide important data, these
often report a complex variety of electrophysiological
parameters that are not well standardized across the
literature. We chose, therefore, to focus our review on
the hERG/IKr assay7 because this is the target of virtu-
ally all torsadogenic drugs, andwe considered that these
data are more suitable for systematic review as they are
reported in a relatively standardized format in the liter-
ature, and hERG/IKr blockade can be measured by the
half-maximal inhibitory concentration (IC50). Thus,
the aim of the present systematic review is to collect
and assess (quantitatively and qualitatively) published
hERG data; this will serve as a reference standard for
future in silico studies and as the basis to compare the
predicted hERG liability with apparent postmarketing
risk identified in clinical and observational studies.

Methods
Selection Criteria

Intervention. Drugs were selected for inclusion in this
review if at least 1 of the following 3 criteria were
fulfilled:

1. Evidence about torsadogenic potential of the
drug from any of the following types of evi-
dence:
◦ drug included in published lists of drugs linked

to TdP or QT prolongation compiled by the
Arizona Center for Education and Research
on Therapeutics (“AZCERT”) group (accessed
June 1st, 2010, http://www.crediblemeds.org);

◦ > 50 total items identified in a PubMed
search for drug (some of which are related to
QT/TdP/hERG) in the past 10 years;

◦ specialist ECG studies (known as “thorough
QT studies”) identified for drug in PubMed.

2. Evidence of drug use in current clinical prac-
tice using databases enrolled in the ARITMO
project:
◦ Top-10 most frequently prescribed/dispensed

drugs within each study drug class, based on
analysis of prevalence of use in 2008 within 6
epidemiological databases; OR

◦ Detectable hospital use (defined as a propor-
tion of dispensing >0.1% of the drug class
for at least 1 year), by checking 2 databases
that include hospital records over the 2005-
2008 period.

3. Newly marketed drugs (since 2006) through cen-
trally authorized procedure (EuropeanMedicines
Agency website).

The final list of drugs included 28 antihistamines,
37 antipsychotics, and 154 anti-infective agents (Online
Supplementary Table S1).

Study Type. Preclinical assays reporting a half-
maximal inhibitory concentration (IC50) or percentage
blockade of the hERG/IKr channel current were eligi-
ble. Only assays performed in mammalian transfected
cell lines or cardiomyocytes were included. Studies in
species that tend to underestimate hERG potency such
as Xenopus oocyte8 or in emerging but unproven tech-
nological models (eg, zebrafish) were excluded. Mam-
malian recombinant expression systems are preferred,
as they resemble human cells, they can be studied at
physiological temperature, and share electrophysiologi-
cal features of the native IKr current. For this reason,
they are recommended for evaluating the affinity of
drug candidates for the hERG channel.2

Search Strategy, Study Selection, and Data Extraction
A systematic literature search was performed in
PubMed, Embase, and Web of Science in Decem-
ber 2010 and updated in February 2014. The full
search strategy is available in the Online Supplementary
Table S2. Only English language articles were included,
and data from conference proceedings or abstracts
not already published in peer-reviewed journals were
excluded.

Titles and abstracts were first screened and short-
listed, then full text was independently assessed by 2
reviewers (L.H. and E.R.). Data from eligible studies
were extracted using a customized Microsoft Access
database by 2 reviewers (L.H. and E.R.). The reported
IC50 value expressed in millimoles per liter (mM), cell
type, and selected experimental conditions (tempera-
ture, potassium concentration, voltage protocol, use
of reference compounds) were extracted for each drug
of interest. Disagreements in study selection or data
extraction were resolved by consensus.
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Data Synthesis
Study type and test conditions were summarized de-
scriptively. Median, minimum, and maximum IC50
(mM) values were calculated from the values reported
in eligible hERG/IKr studies for each drug. If more
than one IC50 value was provided where different test
conditions were applied in a study, these were regarded
as separate experiments.

In line with a previous approach by Redfern et al,9 a
“hERG safety margin”was calculated from the ratio of
the hERG IC50 value and the peak plasma concentra-
tion reported in humans using clinically relevant doses
of the drug (Cmax). Data on the Cmax were provided
to the ARITMO consortium by AstraZeneca. These
data were compiled by extraction of pharmacokinetic
parameters from 3 sources: the GVK BIO

R©
drug

database, the Prous Integrity
R©
database, and Goodman

and Gilman’s textbook The Pharmacological Basis of
Therapeutics.10 These sources provide Cmax data based
mainly on oral administration in therapeutic use, al-
though in some cases these data may have been derived
from different routes of administration or dosing regi-
mens or in different populations.

In the current study the hERG safety margin
(IC50/Cmax) was calculated using the average, mini-
mum, and maximum values of IC50 and using the
average and maximum values for free unbound Cmax

(ie, up to 6 possible values for the hERG margin for
each drug depending on availability of data). Finally,
2 parameters were calculated for the hERG safety
margin: (1) an average value (based on the ratio of
average IC50 and average free Cmax values) and (2) a
range of possible values for the safety margin (based
on the permutations providing the lowest and highest
values).

Interpretation

Quantitative Interpretation. In order to assess and
standardize hERG data, the safety margin range was
used to interpret a drug’s hERG liability. In keeping
with the proposal by Redfern et al,9 if the range was all
below a threshold value of 30, then the drugwas catego-
rized as having evidence of hERG liability (red). If the
margin range was all above 30, the drug was categorized
as having no evidence of hERG liability (green). If the
margin spanned 30, the evidence for hERG liability
was categorized as inconclusive (orange). The hERG
liability was compared to the perceived clinical risk
by using the AZCERT list published on the Credi-
bleMeds.org website (http://www.crediblemeds.org;
accessed 1 June 2014), which classifies drugs according
to whether there is known, possible, or conditional
risk for TdP or if the drug should be avoided in
congenital long QT syndrome. This classification

is based primarily on expert review of data from
spontaneous case reports submitted to the US adverse
event monitoring system and from emerging evidence
in the published literature. The hERG and AZCERT
data were considered to have concordance when there
was (1) evidence of hERG liability for drugs with
known TdP risk on AZCERT or (2) no evidence of
hERG liability for drugs and no mention on AZCERT.
For drugs with inconclusive hERG liability or only
possible or conditional TdP risk, concordance was not
assessed.

Qualitative Interpretation. No quality assessment tool
exists for hERG studies. Instead, the selection criteria
used in this review were chosen so as to identify the
highest quality studies from the outset. A number of
parameters relating to experimental conditions were
recorded to provide a means of identifying differences
in results between hERG studies. In addition, it was
noted whether the study had taken steps to validate
the results by the use of positive and negative reference
compounds.

Five “uncertainty factors” were identified that were
considered to have a bearing on the interpretation
of the results. The body of evidence for each drug
was assessed according to each of these 5 factors and
allocated 1 + for each that applied (equal weighting
assumed). The following criteria were used to allocate
uncertainty factors:

1. Volume of evidence: if only 1 study available
2. Precision of evidence: if range of hERG margin

spanned 30, ie, not precise enough to dichotomize
between red and green categories

3. Consistency of evidence: if available IC50 values
or Cmax varied by an order of magnitude or if
there were clear outliers in the IC50 dataset

4. Validity of evidence: if most studies did not
involve use of positive (eg, dofetilide) or negative
(eg, amoxicillin, propranolol, nifedipine) control
compounds

5. Representativeness of evidence: if studies ap-
peared to use only 1, less useful test condition,
eg, only high potassium levels or only at room
temperature

Uncertainty assessments were made by 1 reviewer
(L.H.) and checked by a second reviewer (E.R.). An
overall uncertainty score was computed from the sum
of these individual factors (up to +++++, maximal
uncertainty) and presented alongside the quantitative
results to assist interpretation. A low uncertainty score
was perceived as less than or equal to +. The higher the
overall uncertainty score, the lower the quality of the
evidence from available published hERG data.
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Figure 1. Flow chart of search results and eligibility assessment.

Results
In total, 1828 studies were retrieved from the litera-
ture search, of which, 97 (5%) were deemed eligible
hERG/IKr assays (Figure 1). The characteristics of the
eligible studies are detailed in Online Supplementary
Table S3.11–107 Eighty-three (86%) of these studies
provided IC50 values for at least 1 drug of interest.

Overall, 263 IC50 values were provided for 69 drugs
(Table 1). Most IC50 values (252, 96%) originated

from studies using transfected mammalian cells such as
Chinese hamster ovary cells and human embryonic kid-
ney (HEK-293) cells. The majority of experiments used
a normal physiological potassium concentration (212,
81%) and a step-step pulse voltage protocol (167, 63%).
The temperature used was more variable across the
studies, with only a third of IC50 estimates originating
from assays performed at physiological temperature. A
positive reference compoundwas used in 40 studies (171
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Table 1. Study Characteristics of Eligible hERG/IKr Assays

Characteristic Antihistamines Antipsychotics Anti-Infectives

No. of hERG/IKr studies 36 42 46
No. of IC50 values provided 70 110 83
Model, No. of IC50 values (%)
Transfected mammalian cells 64 (91) 105 (95) 83 (100)
Cardiac myocytes 6 (9) 5 (5) 0
Temperature, No. of IC50 values (%)
Room 30 (43) 63 (57) 47 (57)
Physiological 25 (36) 37 (34) 26 (31)
Unspecified 15 (21) 10 (9) 10 (12)
Potassium,No. of IC50 values (%)
Normal (4-5 mM) 45 (64) 96 (87) 71 (86)
High (10 mM) 1 (1) 0 0
Low (2.67 mM) 3 (4) 3 (3) 0
Unspecified 21 (30) 11 (10) 12 (14)
Protocol, No. of IC50 values (%)
Step-step 38 (54) 74 (67) 55 (66)
Step-ramp 8 (11) 9 (8) 12 (14)
Automated 20 (29) 27(25) 6 (7)
VAP 0 0 2 (2)
Unspecified 4 (6) 0 8 (10)
Reference Compounds
Positive control used 58 (83) 75 (68) 38 (46)
Negative control used 31 (44) 38 (35) 12 (14)

VAP, ventricular action potential.

IC50 values), and 12 studies used a negative reference
compound (81 IC50 values).

Because Cmax data were not available for 8 drugs, a
hERG safety margin could be calculated for 61 drugs
including 13 of the 28 (46%) target antihistamines, 21
of the 37 (55%) target antipsychotics, and 27 of the 154
(18%) anti-infective agents.

Antihistamines
Drugs categorized as having evidence of hERG liability
included astemizole and terfenadine with low levels
of uncertainty and desloratadine and mizolastine with
higher uncertainty. Cetirizine, clemastine, ebastine, fex-
ofenadine, and oxatomide were categorized as having
no evidence of hERG liability with low to moderate
uncertainty. For the other drugs in this class, evidence
of hERG liability was inconclusive (Table 2, Figure 2).
The main source of uncertainty across the hERG data
for this class was from issues concerning the external
validity of the experimental methods (applicable for 7
of the 13 drugs). Concordance between hERGdata and
the AZCERT classification was seen for 7 of 9 drugs
assessed for concordance.

Antipsychotics
Several antipsychotics were categorized as having
evidence of hERG liability including aripiprazole,
clozapine, droperidol, mesoridazine, olanzapine, per-

phenazine, risperidone, and thioridazine. Pipamper-
one was also included in this category but with a
higher level of uncertainty in the available hERG
data (Table 3, Figure 3). Drugs classified as having
no evidence of hERG liability included amisulpride,
chlorpromazine, sulpiride, flupentixol, fluphenazine,
prochloperazine and ziprasidone with varying levels
of uncertainty. Evidence of hERG liability was in-
conclusive for older drugs such as haloperidol, sertin-
dole, pimozide and quetiapine but also for one of
the newer drugs (post 2000), paliperidone, with a
high level uncertainty in the latter case. The main
source of uncertainty within the hERG evidence for
the antipsychotics related to issues over external va-
lidity of experimental methods (9 of the 21 drugs).
Concordance between hERG data and the AZCERT
classification was seen for 6 of 9 drugs assessed for
concordance.

Anti-Infective Agents
Most anti-infectives (18 of 27 drugs) were catego-
rized as having evidence of hERG liability with
varying levels of uncertainty (Table 4, Figure 4). Amox-
icillin, ciprofloxacin, and gemifloxacin were categorized
as having no evidence of hERG liability, also with
varying levels of uncertainty. For the remaining drugs
in this class (amantadine, erythromycin, mefloquine,
grepafloxacin, moxifloxacin, and telithromycin) the
hERG evidence was inconclusive. The main source of



6 The Journal of Clinical Pharmacology / Vol 00 No 0 2016

Table 2. Safety Margin Data for Antihistamines

ARITMO Review of hERG

Safety Margin

Drug Studied
No. of IC50

Values Average Range
Evidence of hERG

Liability
Uncertainty

Score
Risk of TdP on
AZCERT List

Concordance
Between hERG and

AZCERT

Astemizole 12 <1 <1-2 Yes + Known Yes
Desloratadine 1 0.2 <1 Yes +++ No No
Mizolastine 1 14 2-14 Yes +++ No No
Terfenadine 27 1.1 <1-28 Yes + Known Yes
Chlorphenamine 4 51 21-231 Inconclusive ++ No Not assessed
Diphenhydramine 7 84 14-445 Inconclusive ++ Conditional Not assessed
Loratadine 8 193 <1-536 Inconclusive ++ No Not assessed
Promethazine 1 196 22-196 Inconclusive +++ Possible Not assessed
Cetirizine 3 2350 1200-5224 No + No Yes
Clemastine 1 159 103-159 No ++ No Yes
Ebastine 2 1070 164-1580 No + No Yes
Fexofenadine 2 774 30-1371 No + No Yes
Oxatomide 1 60 46-60 No ++ No Yes

Astemizole (12, +)

Desloratadine (1, +++)

Mizolastine (1, +++)

Terfenadine (27, +)

Chlorpheniramine (4, ++)

Diphenhydramine (7, ++)

Loratadine (8, ++)

Promethazine (1, +++)

Cetirizine (3, +)

Clemastine (1, ++)

Ebastine (2, +)

Fexofenadine (2, +)

Oxatomide (1, ++)
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Figure 2. hERG safety margin range for antihistamines. IC50, half-maximal inhibitory concentration; Cmax, peak plasma concentration reported in
humans using clinically relevant doses of the drug. *hERG liability classified as Yes (red circle), No (green circle), or Inconclusive (orange circle) on the
basis of whether the range of possible values for hERG margin is all below, all above, or spans the threshold value of 30, respectively.

uncertainty within the hERG evidence for the anti-
infectives was the lack of use of reference compounds
(19 of the 27 drugs). Concordance with the AZCERT
classification was seen for 7 of 10 drugs assessed for
concordance.

Overall, 31 (51%) of the 61 drugs studied had
evidence of hERG liability. Of these, 25 (81%) were
classified by AZCERT as having at least conditional,

possible, or known TdP risk; 6 drugs had no mention
with respect to clinical risk in the AZCERT lists includ-
ing 2 antihistamines (desloratadine and mizolastine),
1 antipsychotic (perphenazine), and 3 anti-infectives
(miconazole, lopinavir, and primaquine). Conversely,
16 drugs (26%) of the 61 drugs were classified as
having no evidence of hERG liability. Of these, 2
drugs, according to the AZCERT classification, had
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Table 3. Safety Margin Data for Antipsychotics

ARITMO Review of hERG

Safety Margin

Drug Studied
No. of IC50

Values Average Range
Evidence of hERG

Liability
Uncertainty

Score
Risk of TdP on
AZCERT List

Concordance
Between hERG and

AZCERT

Aripiprazole 2 <1 <1 Yes + Possible Not assessed
Clozapine 4 13 <1-21 Yes + Possible Not assessed
Droperidol 6 <1 <1-2.2 Yes ++ Known Yes
Mesoridazine 2 <1 <1-1.1 Yes + Known Yes
Olanzapine 5 <1 <1 Yes + Possible Not assessed
Perphenazine 2 5 <1-6 Yes + No No
Pipamperonea 1 <1 <1 Yes +++ Possible Not assessed
Risperidone 7 <1 <1-1.2 Yes ++ Possible Not assessed
Thioridazine 18 <1 <1 Yes + Known Yes
Haloperidol 13 11 2-114 Inconclusive ++ Known Not assessed
Paliperidone 1 48 8-48 Inconclusive ++++ Possible Not assessed
Pimozide 15 66 3-2524 Inconclusive ++ Known Not assessed
Quetiapine 2 31.5 8-44 Inconclusive ++ Possible Not assessed
Sertindole 9 148 <1.6-1296 Inconclusive ++ Possible Not assessed
Amisulpride 1 135 49-135 No ++ Conditional Not assessed
Chlorpromazine 2 174 59-201 No None Known No
Flupentixola 1 69 69 No +++ No Yes
Fluphenazine 2 4352 597-7895 No None No Yes
Prochlorperazine 1 4311 2094-4311 No ++ No Yes
Sulpiride 1 6301+ 4297-6301 No ++ Known No
Ziprasidone 7 271 84-1340 No ++ Possible Not assessed

aBased on total Cmax.

known TdP risk (sulpiride and chlorpromazine), and
5 drugs had at least conditional or possible TdP risk
(amisulpiride, ziprasidone, amantadine, ciprofloxacin,
and gemifloxacin). Concordance between hERG and
AZCERT was assessed for 28 drugs, of which 20
(71.4%) were concordant.

A breakdown of the assignment of the uncer-
tainty factors is available in the Online Supplementary
Table S4.

Discussion
In examining cardiac safety, an important assessment
is the extent to which a drug may block the hERG
cardiac potassium channel, a well-known mechanism
involved in drug-induced arrhythmia.7 The purpose of
this review was to categorize systematically the hERG
liability of 3 widely used drug classes. This evidence
is intended to complement data on in vivo models108

and other ion channels that may contribute to the
arrhythmogenicity. Our approach has 2 main strengths.
First, we have systematically categorized hERG liability
considering, qualitatively, the strength of the published
evidence of hERG liability for each drug. Assessment
of study quality is routinely performed in the context
of systematic reviews of clinical trials.109,110 In animal
studies, quality assessment is performed in around

half of reviews111,112 and in only 20% of reviews of
bench studies (such as hERG assays).112 The other
key strength is that this review highlights gaps and
uncertainties in existing knowledge in which additional
experimental studies on hERG liability may still have
an important role.

In general, there was reasonable concordance
between the hERG categorization in the current study
and the classification of clinical TdP risk according
to the AZCERT group (the only available reference
standard), particularly when considering only the drugs
for which data on hERG liability and TdP risk were well
established (�70% concordance). For the antihistamine
class, we classified 4 drugs as having hERG liability. Two
of these drugs, terfenadine and astemizole, are known
to have TdP risk and were withdrawn from the market
in several countries in the 1990s for this reason.113,114

Desloratadine and mizolastine were also classified as
having hERG liability but have not been associated
with TdP in clinical studies, although the product label
for mizolastine refers to a “weak potential to prolong
the QT interval.”115 Uncertainty scores were high
for these drugs, however, because only one IC50 was
available for desloratadine with considerable variation
in available Cmax data. Similarly, the only study found
for mizolastine reportedly used a higher extracellular
potassium concentration (10 mM) than most other
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Aripiprazole (2, +)
Clozapine (4, +)

Droperidol (6, ++)
Mesoridazine (2, +)

Olanzapine (5, +)
Perphenazine (2, +)

Pipamperone (1, +++)
Risperidone (7, ++)
Thioridazine (18, +)
Haloperidol (13, ++)

Paliperidone (1, ++++)
Pimozide (15, ++)
Quetiapine (2, ++)
Sertindole (9, ++)

Amisulpride (1, ++)
Chlorpromazine (2, none)

Flupentixol (1, +++)
Fluphenazine (2, none)

Prochlorperazine (1, ++)
Sulpiride (1, ++)

Ziprasidone (7, ++)
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Figure 3. hERG safety margin range for antipsychotics. IC50, half-maximal inhibitory concentration; Cmax, peak plasma concentration reported in
humans using clinically relevant doses of the drug. *hERG liability classified as Yes (red circle), No (green circle), or Inconclusive (orange circle) on the
basis of whether the range of possible values for hERG margin is all below, all above, or spans the threshold value of 30, respectively.

hERG studies, which has been shown to reduce hERG
block for some drugs but not others.116,117

For the antipsychotics, there was reasonable agree-
ment between hERG liability and AZCERT classifica-
tion. Exceptions were for amisulpride and ziprasidone,
drugs associated with TdP in overdose as well as chlor-
promazine and sulpiride, drugs classified by AZCERT
as known to cause TdP.118,119 We found no evidence
of hERG liability for these 4 drugs, but the available
hERG data had moderate levels of uncertainty. Drugs
such as perphenazine, fluphenazine, flupenthixol, and
prochloperazine, 3 of which we classified as having no
evidence of hERG liability, were not mentioned on
the AZCERT list. QT prolongation and ventricular
arrhythmia are, however, listed as possible undesirable
effects within these products’ labels.

Most of the anti-infective drugs had hERG liability
with themajority classified byAZCERTas having some
degree of clinical risk. This may reflect publication bias
because hERG studies tend to be performed and pub-
lished for drugs where TdP risk has been questioned.
Amoxicillin, as expected, had no evidence of hERG
liability with a wide margin of safety. For some drugs
(eg, erythromycin and moxifloxacin), hERG evidence
was inconclusive or intermediate. This concurs with the
dose dependency seen with erythromycin; TdP risk is
mainly seen with high-dose intravenous administration
of erythromycin or in combination with drugs that

increase drug levels.120 Moxifloxacin is used routinely as
a positive control in clinical cardiac safety studies due
to its relatively moderate effect on the QTc interval.2

Several reasons may explain the discordance be-
tween hERG data and perceived clinical risk. First,
there may be gaps in the clinical knowledge compiled
by AZCERT because much of the published literature
on TdP risk is based on case reports, which vary in
context and completeness of information. There are
relatively few formal controlled studies, and these focus
on a drug’s potential to prolong the QT interval as
a surrogate marker for TdP, whereas larger-scale ob-
servational studies tend to measure broader outcomes
such as sudden cardiac death.121 Second, there may be
gaps in the available hERG data because this is not
always available in the public domain. Third, there is
a varying degree of uncertainty within the published
hERG data. Moderate or high levels of uncertainty
(++ or higher) in the evidence were identified for 45
of the 61 drugs studied. This was mainly due to lack
of use of reference compounds or to the use of less
optimal experimental conditions (eg, conducted only
at room temperature). Experimental variations and
limitations such as adsorption of test substances in
the perfusion systems of patch-clamp experiments can
introduce error in the IC50 values reported.45 Current
regulatory guidelines do not prescribe a specific gold
standard methodology for hERG assays.2 In addition,



Hazell et al 9

Table 4. Safety Margin Data for Anti-Infectives

ARITMO Review of hERG

Safety Margin

Drug Studied
No. of IC50

Values Average Range
Evidence of hERG

Liability
Uncertainty

Score
Risk of TdP on
AZCERT List

Concordance
Between hERG and

AZCERT

Azithromycin 1 24 1-24 Yes ++++ Known Yes
Chloroquine 2 <1 <1 Yes + Known Yes
Clarithromycin 2 2.2 <1-2.7 Yes ++ Known Yes
Fluconazole 1 2.8 <1-2.8 Yes +++ Conditional Not assessed
Gatifloxacin 1 16 3-16 Yes +++ Possible Not assessed
Halofantrine 4 <1 <1 Yes ++ Known Yes
Ketoconazole 5 8 2-19 Yes None Conditional Not assessed
Levofloxacin 4 <1 <1-1.8 Yes ++ Possible Not assessed
Lopinavir 1 16 <1-16 Yes ++++ No No
Miconazole 1 2 <1-2.1 Yes +++ No No
Nelfinavir 1 1.1 <1-1.1 Yes ++++ Conditional Not assessed
Ofloxacin 1 6 <1-6 Yes ++++ Possible Not assessed
Pentamidine 1 <1 <1 Yes ++ Known Yes
Primaquine 1 <1 <1 Yes +++ No No
Ritonavir 1 6 <1-6 Yes ++++ Conditional Not assessed
Roxithromycin 2 4.5 <1-5.5 Yes ++ Possible Not assessed
Saquinavir 1 19 <1-19 Yes ++++ Possible Not assessed
Sparfloxacin 7 19 <1-27 Yes +++ Known Yes
Erythromycin 11 190 22-2649 Inconclusive ++ Known Not assessed
Grepafloxacin 2 54 19-70 Inconclusive ++++ Noa Not assessed
Mefloquine 5 14 1.4-77 Inconclusive + No Not assessed
Moxifloxacin 18 24 <1-65 Inconclusive ++ Known Not assessed
Telithromycin 3 68 2-121 Inconclusive +++ Possible Not assessed
Amantadine 1 49 39-49 No +++ Conditional Not assessed
Amoxicillin 1 1092 207-1092 No ++ No Yes
Ciprofloxacin 1 250 160-250 No +++ Conditional Not assessed
Gemifloxacin 1 149 149-222 No +++ Possible Not assessed

aDrug not listed in AZCERT but no longer marketed; withdrawn due to arrhythmia concerns.

for some drugs only one study was available. Neverthe-
less, among the 16 drugs studied with the lowest level of
uncertainty (+ or less), only 2 appeared to completely
disagree with the AZCERT lists (chlorpromazine and
perphenazine). Fourth, the hERG safety margin, even
with perfect data, does not provide the whole story
with respect to a drug’s clinical risk for TdP. Other
drug-specific pharmacodynamic and pharmacokinetic
factors may be involved. There are also patient-specific
factors that may modulate TdP risk including con-
genital long QT syndrome, heart failure, bradycardia,
electrolyte imbalance, and sex.1 We addressed only
hERG as a possible target implicated in TdP; however,
other ion channels (eg, sodium and calcium) may have
roles to play.122 Although the hERG safety margin
attempts to consider some of a drug’s pharmacokinetics
by quantifying the hERG blockade in the context of
plasma concentration, the latter may not represent
the tissue concentration achieved at the myocardial
membrane cells.123 Indeed, other important properties
such as bioavailability, steady-state concentration, and
volume of distribution should be considered. The route

of administration may be particularly important for
some drugs. This may explain, in part, the results for
erythromycin where inconclusive evidence of hERG
liability was observed. Use of Cmax values based only
on intravenous administration may have resulted in a
much narrower margin of safety.124

Our choice of metric, the ratio of IC50/Cmax, has
been used by several authors to stratify arrhythmogenic
risk. This was first used byRedfern et al, who compared
hERG data for 100 drugs that were classified according
to their perceived clinical risk.9 From this study, a 30-
fold hERG safety margin was proposed as a guide
for decision making in identifying high-risk drugs.
DeBruin et al found that a similar metric (effective
therapeutic plasma concentration/IC50) was positively
correlated with case reports of serious arrhythmias in
an international adverse drug-monitoring system.125

More recently, Lin et al attempted to identify thresh-
olds for a range of hERG metrics that may help in
prediction of TdP risk.126 They compared percentage
hERG inhibition (at normal plasma concentrations),
IC50 for hERG, and the IC50/Cmax ratio between 9



10 The Journal of Clinical Pharmacology / Vol 00 No 0 2016

Figure 4. hERG safety margin range for anti-infectives. IC50, half-maximal inhibitory concentration; Cmax, peak plasma concentration reported in
humans using clinically relevant doses of the drug. *hERG liability classified as Yes (red circle), No (green circle), Inconclusive (orange circle) on the
basis of whether the range of possible values for hERG margin is all below, all above, or spans the threshold value of 30, respectively.

drugs strongly associated with TdP and 11 drugs with
less evidence for an association. They found that >30%
hERG inhibition provided reasonable sensitivity and
specificity for distinguishing between the 2 groups. The
IC50 and the IC50/Cmax ratio, however, discriminated
less well, possibly due to the limited number of drugs
included in the analysis. Gintant suggested an optimal
threshold value of 45 for the safety margin following a
comparison of hERG data with the degree of QTc pro-
longation reported in clinical thorough QTc studies for
39 drugs.127 This threshold would not have changed the
categorization in the present study with the exception
of 1 drug (quetiapine) that would have been classified
as having hERG liability rather than “inconclusive.”

Some of the results of the current study are in
agreement with other studies that have report a hERG
safety margin for the drugs of interest in the ARITMO
project, although some differ in the category to which
they are classified. This may be explained by the differ-
ent approaches used. Some studies have used a more
conservative approach by using the lowest IC50 and
largest Cmax,9 whereas other authors have chosen a
best estimate for hERG block in which multiple data
were available from different species or different test
conditions.126 We adopted a more inclusive approach,
calculating the range of possible values.

Many developmental drugs have been eliminated
from early screening due to hERG liability, which may
or may not translate to a real-life TdP risk. Our analysis

supports the view that drug manufacturers should
not rely only on hERG data when making decisions
regarding the viability of development of new drugs.
For regulatory authorities, the emphasis is on assessing
the absence of torsadogenic potential of a drug. We
found that 7 drugs with at least possible risk of TdP
did not have hERG liability. These findings may be
due to limitations of the available hERG data itself
or interpreted as false negatives because of different
pharmacological properties (eg, sodium channel block-
ade), actions on additional potassium channels (eg,
the transient outward current Ito), or interference with
hERG trafficking rather than its inhibition. Therefore,
recommending a standardized method for the hERG
assay (which was not the aim of the present work)
is unlikely to overcome the limitations of hERG as
a predictive tool. The recent Comprehensive in Vitro
Proarrhythmia Assay (CiPA) initiative incorporating
analysis of multiple ion channels, in silico modeling,
and use of human stem cell technology has shown
promise in this respect.128,129

In conclusion, we have categorized the hERG lia-
bility for 3 widely used drug classes. In keeping with
systematic reviews of clinical studies, we have also
incorporated a qualitative assessment of the strength
of the available evidence. Overall, we, as did other
authors, observed a reasonable correlation between
drugs with hERG liability and existing knowledge on
torsadogenic risk. It is clear, however, that there remain



Hazell et al 11

gaps and inconsistencies in the existing evidence, and
a more comprehensive integration of other important
data is necessary to fully understand this issue. In
particular, a comparison of the predicted risk on the
basis of preclinical or molecular modeling for TdP lia-
bility with real-life risk estimates of symptomatic QTc
prolongation, TdP, ventricular fibrillation/ventricular
tachycardia, and sudden death is required.
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